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Abstract. A development of R'Yr(6R,q5R)  has been established in a series of products 
4Y;(O1, d , )~ - ; -~  Yr7p(ez ,  dz) where ( r l ,  e,, 41), ( r z ,  e,, dz) and (R,  e R ,  4R) are the spherical 
polar coordinates of the vectors rl , r2 arid R = r ,  - r 2 .  The expansion of l/lrl - r2)  as a series 
of spherical harmonics in (e,,  I$J and (e,, dZ) has been generalized for the case l/lrl - r J ,  
where t is an integer. 

1. Introduction 

There are many instances in physics where some quantity is found by evaluating an 
integral whose integrand contains both a Coulomb-like interaction and an entity which 
involves atomic orbitals with origin at different centres (Sharma 1968, Barnett and 
Coulson 1951). They arise in the determination of electronic energy, hyperfine coupling 
constants, transition probabilities, components of the electric field gradient tensor 
and many other quantities. One way of evaluating integrals of this type is to expand 
the orbitals on different centres in terms of coordinates on one centre. However, if one 
is particularly interested in part of the Coulomb interaction which does not appear in 
the multicentred part of the integrand, one must expand the Coulomb component, and 
one way of proceeding is to change the integration variable so that the site dependent 
quantity now only involves one variable. One does this however at the expense of 
changing the form of the Coulomb-like component of the integrand so that when one 
attempts to try to expand this in spherical harmonics, for example, one needs an explicit 
form for the coefficients. The spherical harmonics usually describe the orientation of 
vectors so that the latter coefficients will involve the angular momentum quantum 
numbers of the harmonics and the magnitudes of the vectors. 

During a recent investigation into the wavevector dependence of crystalline electric 
fields in metals it became apparent that, although such relationships using spherical 
harmonics and Legendre polynomials have been given in the literature, their forms are 
not the most explicit and further work must be done before they can be directly applied. 
In particular it became necessary to expand l/lrl -r2-r31 in a series whose terms are 
products of three harmonics with angles (e l ,  41), (e2, c j 2 )  and (e3, &) which represent 
the orientation of the vectors r, ,  r2 and r3 respectively. It is well known (Hobson 1955) 
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that the reciprocal distance l/lR-r31 may be expanded as follows: 

where O R  and q5R describe the orientation of R and r ,  denotes R if R < r3  and r 3  if 
R > r 3  with a similar definition for r, . If this relation is used to  attempt an expansion 
of l/lrl - r ,  - r 3 (  with R = r1 - r2  then clearly it becomes necessary to be able to  express 
R'Yr(BR, q5R) as a series of products of harmonics one in (e, ,  4,) and the other in (e,, $,). 
Such an expansion has been given by Sack (1964) but the radial factors which enter 
the coefficients have been given in terms of a hypergeometric series. From the point of 
view of direct application, so that for example the coefficient of any one particular 
product of two spherical harmonics can be picked out with ease, it is obviously ad- 
vantageous to have these radial factors in a more explicit form. It should be pointed out 
however that Sack's form is probably better if one wishes to consider the validity of 
such expansions near singular points or the symmetry properties of various parts of 
the expansion. Moreover, Sack has a very complicated way of obtaining the radial 
factors. He derives a differential equation for the radial factors and from considerations 
of dimensionality shows they must be of the form of a series in r 3 < / R ,  multiplied by the 
product formed from a fixed power of r 3  and a power of R.  The coefficients of this series, 
using the differential equation, can be shown to satisfy a set of recurrence relations, the 
solution of which can be expressed in terms of Gauss's hypergeometric function. In 
this paper we use a much more simple and compact proof of the expansion for 
R'Y;(BR, 4R)  namely by induction and further the result is given in the explicit form of 
simple algebraic quantities which can be more readily applied to a given problem. 
We believe that this latter result has not been given in such a simple form before and is 
therefore of value. 

It is conceivable that for example in a theory of screening one might also wish not 
only to  have a formula for l / r 1 2  = l/lrl - r,I in terms of spherical harmonics describing 
the orientations of Y, and r , ,  but a series of products of harmonics for l/r\, where t is 
any integral power. Although such expansions may be written as a series of Gegenbauer 
polynomials in the angle between r1  and r ,  i t  is often more convenient to expand in the 
orientations of r1 and r2  separately. Once again Sack has derived such expressions but 
in terms of hypergeometric functions. We shall derive a series for the two cases when 
t is an odd and when t is an even integer. Sack has previously suggested the use of 
Legendre functions of the second kind QP but did not follow this train of thought 
because when 1.1 is fractional there were differing conventions for the phase angles 
involved. In the case when tis  an even integer we have used this alternative new approach 
to advantage since in this case no difficulties over phases arise. Whether t is odd or 
even our demonstrations are inherently more simple than Sack's as before and, although 
a few more summations are involved, the results can be applied directly without having 
to evaluate some other function involved (except in the case when t is even when a 
Legendre function of the second kind is used.) 

When deriving the formulae that will be given we found it necessary to prove sub- 
sidiary relations which may also be of value. 

2. A relation for R'Y;"(O,, 4,) 

In this section we shall establish a development of R'Y;"(OR, 4R) in a series of products 
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(2f)! w !(21- 2f) !( 1 - m - w) ! 
x Iim ( 

J-=o w = o  (2f+ 1)!(21-2f+ 1)!(2f-w)!(1-2f+m+w)! 

where ( '-m)C(w) is the binominal coefficient. f and  w are integers and any particular term 
is considered to be zero if at least one of the relations I f -  wJ < f and Jm + w - f l  < l - f  
is violated. Note that 8, and d R  describe the orientation of the difference vector r1 - r2  
and not, as in the addition theorem for Legendre polynomials (Jahnke and Emde 1945), 
the angle between the two vectors r1 and r 2 .  

To prove (1) we shall use induction on 1 and suppose the formula true for 1- 1 and 
prove it true for 1. Hence, if the formula holds when I = 1 it will be true for all 1. To 
carry out this procedure we must therefore decompose y;"(eR,  4 R )  into harmonics of 
order i < I in the simplest way. We do this by writing the latter harmonic as a linear 
function of YY- Yy , Y;"--ll Y ; and YT-+: Y ;  l .  It is clear that the relative magnitude of 
the coefficients of the latter three functions will be the same as those of the corresponding 
Wigner coefficients for the construction of an I manifold from those of degree I -  1 and 
unity. That is (Heine 1960), 

The value of a may be found in a number of ways. For example if we premultiply (2) 
by Yr*(OR, 4R)  and integrate, since the harmonics are normalized to unity we obtain 
a directly. We find that the constant a is given by a = {$7c(21+ 1)/21)1'2. 

We now decompose the right-hand side of (2) using the formula (1) assumed true 
for 1 < 1- 1, premultiply by Irl -r21f and obtain 

(21) !(1- m) ! 

(2f) ! w !(21- 2f- 2) !(I - m - w) ! 

(-1)s ( I - m ) C (  r f y ~ - w ( e l , ~ l ) r ~ - l - J - y m - l + w - J -  l - 1 - J -  ( 0 2 > 4 2 )  
w )  1 

(2f) ! w !( 21 - 2f- 2) ! ( I  - m - 1 - w) ! f - 1  I - m - 1  

(2f+ 1)!(21-2f- 1)!(2f-w)!(I-2f+m- 1+w)! 
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Each term of each double summation in (3) is composed of two parts and we take one 
part from each summation ; that is, we pick out the parts multiplied by r2 Y;(O2, $J, 
r2Yy(Q2, &) and r,Y; '(e2, &). These may be regrouped by using a special case of 
equation (2), namely 

( I -  2f+ m + w)(I- 2f+ m + w - 1) l j Z  x i  (21-2f)(21-2f- 1) 1 

We observe also that in (3) in the second and third double summations we can extend 
the summation over w to 1 - m since the additional terms will vanish because the con- 
ditions mentioned in connection with equation (l), applying to the harmonics occurring, 
are violated. After regrouping all the harmonics in (e,, &) we obtain 

(2f) ! w !(21- 2f) ! ( I  - m - w) ! 
(2f+1)!(21-2f+ 1)!(2f-w)!(1-2f+m+w)! (21) !( I - m) ! 

x (- i ) ~ ( l - m ) c ( , , r ~ ~ = : - w ( e ~ ,  +l)r:-fY;"-+y-f(e2, $2)( y). ( 5 )  

The above method is repeated by regrouping the three terms multiplied by r l  Yi(Ol,  $1), 

r l  Yy(O,, $ 1 )  and r1Y;'(Ol, + 1 )  using a relation involving (el ,  $1)  similar to (4) for 
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r{+lY$:  :-"(el, 41) instead of r\-JYy-+;-J(02, 42).  The net result gives 

(2f+ 2) !w  !(21- 2f- 2) ! ( I  - m - w )  ! 471(1+m)!(21+ I)! ' - I  

(21)!(1-m)! 1 4 = = (2f+ 3) !(2I- 2f- 1 )  (2f- w + 2) ! ( I  - 2f+ m + w - 2) ! 

f +  1 
( - i)f + 1 ( l - m ) ~ ( ~ , r { +  Y $ ;  ; - "(e,, 4 l)r\-SY;l_+;U=S1 - q 0 2 ,  d2)( (6) 

In (6) iff  is replaced by f -  1 each term in the double summation is the same as that in 
(5) except that in place of ( l - f ) / I  (at the end of each term) in (5) we have f/l. We can 
make this change providing we replace the summation over f in (6) by a sum from 
f = 1 to f = 1. When f = 0 in (5) we get exactly the first term in Jrl -r21'Yy(OR, 4R) 
given in (1) since the factor ( l - f ) / 1  is then equal to unity. Whenf(after changingfto 
f -  1) in (6) is equal to 1 the part f /1 is also equal to unity and we get the f = I term 
in (1). If 0 < f < 1 we may combine the factor ( I - f ) / 1  from (5) and f / l  from (6) to give 
unity. Thus the combination of (5) and (6) does indeed give ( 1 )  and hence the formula is 
true by induction since it is true for 1 = 1 (which may easily be verified). 

i 

3. A formula for 1/ri2 when t is odd 

In this section we first give below a formula for differentiating the Legendre polynomial 

1 d" 
2 n!dx 

P"(X) = 7-"(x2- 1)" 

with respect to x ,  s times : 

ds + ( n - s ) , + ( n - s -  1) s- 2 
(,,(2n-2s-4p+ 1) n (2n-1-2p-2k)Pn-,-2p(x). (7) --p(x) = ,y ( S + P - l ) c  

dxs " p = o  k = O  

The two upper limits on the sum p are for the cases when n - s is even or odd. 
Now let us prove (7) by induction on s. When s = 1 we obtain 

d if n is odd 
- P,(x) = (2n - l)Pn - (x) + (2n - 5)Pn - 3(x) + (2n - 9)Pn - Jx) + . . . 
dx i 2, if n is even 

which is a relation given in many elementary texts (Copson 1935). 
Assume now that (7) is true for s- 1, thus 

s- 3 

x n (2n - 1 - 2p - 2k)Pn - + - 2p(  x). 
k = O  

(9) 

If h is an integer, then we use the well known relation for Legendre functions (see Jahnke 
and Emde 1945, to be referred to as I) 
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Using the above relation the right-hand side of (7) becomes, with h = n-s-  2p, 
d +(n-s),+(n-s- 1) s- 2 

dx p = o  
( p )  n ( 2 n - l - 2 ~ - 2 k ) ( P n - s - 2 p + l ( ~ ) - ~ ~ - s - * p -  1(x)) - c (s+p-l)c 

k = O  

d 
dx 

= -F(x )  

where F(x )  is defined by equation (10). Thus, if we can show that F ( x )  is equal to the 
right-hand side of (9), then 

d d ds-' 
dx dx dxs-' 
- F ( x )  = - ---Pn(x) 

and we shall have proved the result for any s assuming it to be true for s- 1 .  In order to 
simplify the comparison with (9) we rewrite F(x)  as 

+(n-s),+(n-s- 1) s -  2 

p = o  k = O  
F(x )  = c 

(p-1)  n (2n+1-2p-2k)Pn-s-,p+l(x). (11) - c (s+p-2)c 

( s + p - l ) c  ( p )  n (2n - 1 - 2 ~  -2k)Pn -s- 2 p +  1(x) 

+(n- s +  l ) , + ( n -  s) s - 2  

k =  0 p =  1 

The term with p = 0 in the summation of (9) equals 

(2n - 2s + 3)(2n - 1)(2n - 3)(2n - 5 )  . . . (2n - 2s + 7)(2n - 2s + 5 )  

whereas the same term in the first summation of (1 1 )  equals 

(2n - 1)(2n - 3)(2n - 5 )  . . . (2n - 2s + 5)(2n - 2s + 3 )  

so the p = 0 term is the same in ( 1  1) and (9). For p 2 1 the coefficients of 
in ( 1  1) may be rewritten as 

2 p +  l(x) 

( J2n  - 2p - 2s + 3) - ("P- 2)C ( p -  l ) W +  1 - 2P)) { ( s + P -  "c 
x (2n - 1 - 2p) (2n - 3 - 2p) . . . (2n - 2p - 2s + 7 )  (2n - 2p - 2s + 5 )  

which is exactly the pth term of (9). Therefore (7) is proved by induction. 

expand as follows : 
We now continue with the relation for l / r i 2 .  When x = cos 8 and r < 1 (see I) we 

00 

( 1  - 2rx + r 2 ) - +  = 1 rUPu(x). 
u = o  

Differentiating both sides of (12) q times with respect to x ,  we obtain : 
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whereJ(q) = 1 . 3 .  5 . 7 . .  .(2q- 1) = (2q- l)!! (13) is therefore equal to 

and using (7) this becomes 

f ( u - q ) , i ( u - 4 - 1 )  4 -  2 
C ( , ) ( 2 ~ - 2 q - 4 ~ +  1) n ( 2 ~ -  1 -2~-2k)P~- , -2 , (~ ) .  (14) 

k = O  
c r'(4+u-1)  

u = o  
c 

u = o  

l/lrl -r21' may be written as 

{ 1 + (i; ~ i ;  > ) 2  - 2(r >) cos e) - t / 2  

i;' 

where 8 is the angle between the two vectors r1 and r2 and T., and i;, are defined to be 
the smallest and the greatest of r l  and r2 respectively. x in (12), (13) and (14) is now 
identified with cos 8, ?<IF> with r and 2q + 1 with t .  Thus 

1 m + ( 2 u - t + l ) , + ( 2 u - r - l )  1 

(;= 0 

-- 
i;' ).U- 1 ) /2  

> f((t - 11/21 c 1 - c  
Ir1-r21f u = o  

x ru(i(*+ 2 v - 3 ) ) ~  2U - 4~ - t + 2) (U)( 

+ ( t -  1 ) - 2  

k = O  
x fl (214- 1 -2~-2k)P , - , , -~ (~ -~~(cos  e). 

I t  is convenient now to use the addition theorem for Legendre functions which may be 
stated as 

where (el ,  41) and (e2, 42) denote the orientation of the vectors r1 and r2  and the sum 
contains products of associated Legendre polynomials. Finally, we get the following 
relation : 

1 1 1 m i ( 2 u - t + l ) , + ( 2 u - r - l )  u-2u-+(2-1)  
- c -- 

m =  - ( U -  2u-+(f -  1)) r: f ( ( t -  1)/2) c 
0 = 0  

t -  C 
Iy1-yz l  u = o  

ru - i ( t  - 1 )  (io + 20-  3 ) ) ~  2u - 4u - + 2) (")( 

+ ( r -  1 ) - 2  (U - 2u -&- 1) - ]mi)! 
k = O  (14-2v-3t- l)+JmJ)! 

x n (2u-1-2u-2k) 
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4. A formula for l /r \2  when t is even 

When t is even we shall make use of formula (7)  for the derivative with respect to x 
performed s times on a Legendre polynomial. We first find a formula for ( 1  - 2rx + r2)- 
and then extend this using (7 )  to  the case ( 1 - 2 r ~ + i ~ ) - ” ~  for even t .  It is supposed 
that the former may be expanded in Legendre polynomials as 

m 

(1 - 2rX + r2)-  = bd(r)Pd(X). 
d =  0 

Multiplying (16) through by P,(x) and integrating we obtain 

By a relation due to Neumann (see I) (17) becomes 

2z+l  l+r2  
bz = ---Q,( 2r 7) 

and 

where Q,(y) is a Legendre polynomial of the second kind of the zth order which may be 
expanded for lyl > 1 (a condition which always holds in (18 ) )  as follows : 

Z !  

QAY) = i . 3  . 5 .  . . (22+ 1) 

(z+ l)(Z+2)(Z+3)(2+4) 1 
2 . 4 . ( 2 2 + 3 ) ( 2 ~ + 5 )  yZ+’ 

+ 

If we differentiate (1 - 2rx+r2)- l ,  p times with respect to x ,  we get 

To find the expansion for l/Jrl -r21f we identify cos 8 with x again, &IF> with r and 
p + 1 with t/2. We deduce from (20), ( 1 8 )  and (7)  that 

-= 1 f ?!!$Qd(-)---- 1 + r 2  1 1 1 1  
lr1-r21f d = O  2r 23t-1 r t f - 1  ( i t -  I)! pt> 

f ( 2 d -  t +  2 ) , f ( 2 d -  r )  

X c ~(t+2”-44’C(u,(2d-4t.-t+ 3 )  
u = o  

+1-3  

k = O  
(2d -  - 2u- 2k)P+(2d-  f +  2 - 4u)(x). (21) 

Using the addition theorem for Legendre functions and the definition of spherical 
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harmonics given by Condon and Shortley (1964) (21) becomes 
m +(2d-  t +  Z),+(Zd- t )  +(2d-  t +  2 - 4 v )  c 

m = - + ( 2 d - t + 2 - 4 ~ )  2r c 
Ir1 -r21t d = O  u = o  

1 

5. Conclusions 

In this paper we have studied the spherical harmonic which describes the orientation 
of the vector difference r1 - r 2 .  We have proved a formula for the expansion of this 
harmonic in a series of products of spherical harmonics in the orientation of r1 and 
r2  separately. There are many areas of physics, we believe, where such a formula would 
prove to  be of value. Further, it is easy to  see how our formula could be generalized to 
generate a harmonic expansion for Irl - r2 - r3 - r4 .  . . - r,l'Y;t(B, $) by repeated use of 
the relation we have given (8 and $ here represent the orientation of the vector inside 
the moduli signs). 

A second relation has been given for a Legendre polynomial P, differentiated s times. 
This was expanded in terms of Legendre polynomials and was used in conjunction 
with other relationships to write l/lrl -r21r as a series of products of spherical harmonics, 
one in the orientation of r 1  and the other in the orientation of r 2 ,  where t is an integer. 
We have in fact investigated the cases when t is odd and even separately. One obvious 
example where such an expansion would prove useful is in the use of a Thomas-Fermi 
screened Coulomb interaction of the form e' exp(-L/r12)/r12 where L is the screening 
length. 

These formulae are particularly useful when collected together in one place. The 
utility of the expansions we have given, particularly that for Y ; t ( d R ,  c$~), becomes clear 
if we wish to pick out a given spherical harmonic, for example Yr(O,4),  from the series. 
Our expansions enable us to pick out the contributions to the coefficient of such a 
harmonic and to readily assess their magnitude and importance in any particular 
physical application. A further generalization is possible if we use our formulae to 
generate a harmonic expansion for l/lrl - r2 - r3 - . . . - r J .  
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